Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(10): 2515-2525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436691

RESUMO

The ultrasensitive detection of hepatitis C virus (HCV) nucleic acid is crucial for the early diagnosis of hepatitis C. In this study, by combining Ag@Au core/shell nanoparticle (Ag@AuNP)-based surface-enhanced Raman scattering (SERS) tag with hybridization chain reaction (HCR), a novel SERS-sensing method was developed for the ultrasensitive detection of HCV nucleic acid. This SERS-sensing system comprised two different SERS tags, which were constructed by modifying Ag@AuNP with a Raman reporter molecule of 4-ethynylbezaldehyde, two different hairpin-structured HCR sequences (H1 or H2), and a detection plate prepared by immobilizing a capture DNA sequence onto the Ag@AuNP layer surface of the detection wells. When the target nucleic acid was present, the two SERS tags were captured on the surface of the Ag@AuNP-coated detection well to generate many "hot spots" through HCR, forming a strong SERS signal and realizing the ultrasensitive detection of the target HCV nucleic acid. The limit of detection of the SERS-sensing method for HCV nucleic acid was 0.47 fM, and the linear range was from 1 to 105 fM.


Assuntos
Hepatite C , Nanopartículas Metálicas , Nanopartículas , Ácidos Nucleicos , Humanos , Hepacivirus/genética , Análise Espectral Raman/métodos , Ouro
2.
Chem Commun (Camb) ; 60(22): 3047-3050, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376492

RESUMO

A novel AIEgen molecular probe (N-3QL) with typical AIE effects, good biocompatibility, lysosome targeting, pH activation, excellent photostability, and high brightness was synthesized using two simple synthetic steps. Spectroscopic and cytotoxicity experiments indicate that N-3QL can not only be used for the dynamic monitoring of cancer cell lysosomes, but also for photodynamic therapy (PDT) ablation of cancer cells.


Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Sondas Moleculares/análise , Concentração de Íons de Hidrogênio , Lisossomos/química
3.
Anal Chem ; 95(39): 14710-14719, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728636

RESUMO

Due to the adjustable hybridization activity, antinuclease digestion stability, and superior endocytosis, spherical nucleic acids (SNAs) have been actively developed as probes for molecular imaging and the development of noninvasive diagnosis and image-guided surgery. However, since highly expressed biomarkers in tumors are not negligible in normal tissues, an inevitable background signal and the inability to precisely release probes at the chosen region remain a challenge for SNAs. Herein, we proposed a rationally designed, endogenous enzyme-activatable functional SNA (Ep-SNA) for spatiotemporally controlled signal amplification molecular imaging and combinational tumor therapy. The self-assembled amphiphilic polymer micelles (SM-ASO), which were obtained by a simple and rapid copper-free strain-promoted azide-alkyne cycloaddition click reaction between dibenzocyclooctyne-modified antisense oligonucleotide and azide-containing aliphatic polymer polylactic acid, were introduced as the core elements of Ep-SNA. This Ep-SNA was then constructed by connecting two apurinic/apyrimidinic (AP) site-containing trailing DNA hairpins, which could occur via a hybridization chain reaction in the presence of low-abundance survivin mRNA to SM-ASO through complementary base pairing. Notably, the AP site-containing trailing DNA hairpins also empowered the SNA with the feasibility of drug delivery. Once this constructed intelligent Ep-SNA nanoprobe was specifically cleaved by the highly expressed cytoplasmic human apurinic/apyrimidinic endonuclease 1 in tumor cells, three key elements (trailing DNA hairpins, antisense oligonucleotide, and doxorubicin) could be released to enable subsequent high-sensitivity survivin mRNA imaging and combinational cancer therapy (gene silencing and chemotherapy). This strategy shows great application prospects of SNAs as a precise platform for the integration of disease diagnosis and treatment and can contribute to basic biomedical research.


Assuntos
Azidas , Neoplasias , Humanos , Survivina , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , DNA , Oligonucleotídeos , Oligonucleotídeos Antissenso , Imagem Molecular , RNA Mensageiro
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982761

RESUMO

In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.


Assuntos
Braquiúros , Animais , Feminino , Masculino , Braquiúros/genética , Braquiúros/metabolismo , Reação Acrossômica , Sêmen , Espermatozoides , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Filogenia , Mamíferos
5.
Chem Commun (Camb) ; 58(94): 13143-13146, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349886

RESUMO

Herein, we have designed and synthesized a quinolinyl-AIE photosensitizer (TPE-4QL+) with an alternative elevated intersystem crossing (ISC) rate, which exhibits not only highly efficient photosensitivity but also high tumor cell specificity and an excellent mitochondrial targeting ability. In vitro experiments indicate that using TPE-4QL+ as a photosensitizer can induce a series of tumor cells to die with a low dose of radiation, but with no obvious toxicity to normal cells. The in vivo studies on a mouse model bearing a subcutaneous 4T1 xenograft also show that TPE-4QL+ can be used with high efficiency as a photosensitizer in PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Camundongos , Animais , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos
6.
ACS Appl Mater Interfaces ; 14(45): 50583-50591, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322919

RESUMO

Protein therapy has been considered to be one of the most direct and safe ways to regulate cell function and treat tumors. However, safe and effective intracellular delivery of protein drugs is still a key challenge. Herein, we developed a tannic acid-assisted biomineralization strategy for the encapsulation and intracellular delivery of protein drugs. RNase A and glucose oxidase (GOD) were choose as the protein drug model. RNase A, GOD, TA, and Mn2+ are mixed in one pot to attain RG@MT, and CaCO3 coating is subsequently carried out to construct RG@MT@C through biomineralization. Once RG@MT@C is endocytosed, the acidic environment of the lysosome will dissolve the protective layer of CaCO3 and produce plenty of CO2 to cause lysosome bursting, ensuring the lysosome escape of the RG@MT@C and thus releasing the generated TA-Mn2+, RNase A, and GOD into the cytoplasm. The released substances would activate starvation therapy, chemodynamic therapy, and protein therapy pathways to ensure a high performance of cancer therapy. Due to simple preparation, low toxicity, and controlled release in the tumor microenvironment, we expect it can realize efficient and nondestructive delivery of protein drugs and meet the needs for precise, high performance of synergistically antitumor therapy in biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Humanos , Taninos/farmacologia , Taninos/uso terapêutico , Ribonuclease Pancreático/uso terapêutico , Preparações Farmacêuticas , Biomineralização , Neoplasias/tratamento farmacológico , Glucose Oxidase/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Anal Biochem ; 655: 114824, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944695

RESUMO

Food-borne diseases caused by pathogenic bacteria are one of the serious factors affecting human health. However, the most commonly used detection methods for pathogenic bacteria not only require expensive instruments, but also take a long time due to the complicated and cumbersome detection process. Therefore, the development of a fast, simple, and low-cost detection method for pathogenic bacteria is crucial for food safety and human health. In this work, based on the high binding ability of antimicrobial peptide (AMP) and polymyxin B (PMB) to bacteria, combined with magnetic separation technology, a new enzyme-free colorimetric strategy was constructed to achieve visual detection of Gram-negative bacteria in complex samples. The sensor system was divided into the following two parts: a colorimetric signal amplification nanoprobe, which was modified with AMP to enable effective binding of the colorimetric probe to the surface of bacteria, and a PMB-modified magnetic nanobead (MNB), which was used as the capture and enrichment unit of Gram-negative bacteria, as a result of which PMB could effectively distinguish Gram-negative bacteria from Gram-positive bacteria. Under optimized conditions, the detection limit of the method for Gram-negative bacteria (e.g. E. coli (G-)) was as low as 10 CFU/mL, and it was successfully applied to complex real samples. In addition, the developed colorimetric sensor offered advantages, such as fast response, less time consumption, high sensitivity, and low cost. It can be expected to become a new diagnostic tool for on-site detection of pathogenic bacteria in remote areas.


Assuntos
Colorimetria , Escherichia coli , Humanos , Bactérias , Colorimetria/métodos , Bactérias Gram-Negativas , Fenômenos Magnéticos
8.
Biosens Bioelectron ; 216: 114611, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985060

RESUMO

Pathogenic bacteria are a major cause of foodborne diseases, which not only seriously threaten human safety but also cause significant losses for the national economy. Therefore, it is very important and urgent to develop a method for the detection of pathogenic bacteria with high accuracy, high sensitivity, and easy interpretation for use in food safety and medical hygiene. Herein, based upon the sensitive color changes induced by the dispersion and aggregation states of gold nanoparticles (AuNPs), a point-of-care (POCT) colorimetric assay was constructed for the rapid and sensitive visual detection of pathogenic bacteria. The POCT visual sensing system is composed of two individual elements: (1) an alkaline phosphatase/graphene oxide (GO@PEI-ALP) nanoconjugate that can release free ALP molecules in the presence of pathogenic bacteria; (2) D-glucose-6-phosphate (pGlu) and 3-aminobenzene boric acid (AMBA)-functionalized AuNPs (pGlu/AMBA-AuNPs) that are cross-linked upon the digestion of pGlu by free ALP molecules, resulting in a significant color change. Under optimized conditions, the detection limit of this sensing system for target bacteria was as low as 24 CFU mL-1 and was successfully applied to complex real samples. This proposed rapid colorimetric assay has high sensitivity, accuracy, and practicability with an intuitive signal and is expected to provide new inspiration for the detection of pathogenic bacteria.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Fosfatase Alcalina , Bactérias , Colorimetria/métodos , Glucose-6-Fosfato , Ouro , Grafite , Humanos , Nanoconjugados
9.
Foods ; 11(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35885277

RESUMO

Mulberry leaf protein is a potentially functional food component and health care agent with antioxidant and anti-inflammatory properties. However, its composition, immunoregulatory effects, and gut microbial regulatory effects are unclear. Herein, ultra-filtrated and gel-fractionated mulberry leaf protein (GUMP) was characterized. Its effects on cyclophosphamide-induced immunosuppressed mice were further investigated. The results indicated that GUMP is a glycoprotein mainly containing glucose, arabinose, and mannose with 9.23% total sugar content. Its secondary structure is mainly ß-sheet. LC-MS/MS analysis showed that GUMP closely matched with a 16.7 kDa mannose-binding lectin and a 52.7 kDa Rubisco's large subunit. GUMP intervention significantly improved serous TNF-α, IL-6, and IL-2 contents; increased serum immunoglobulins (IgA and IgG) levels; and reversed splenic damage prominently. Moreover, GUMP administration increased fecal shot-chain fatty acid concentration and up-regulated the relative abundance of Odoribacter, which was positively correlated with SCFAs and cytokine contents. Overall, GUMP alleviated immunosuppression through the integrated modulation of the gut microbiota and immune response. Therefore, GUMP could be a promising dietary supplement to help maintain gut health.

10.
Anal Chem ; 94(16): 6120-6129, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412803

RESUMO

Because of the low atomization and/or ionization efficiencies of many biological macromolecules, the application of mass spectrometry to the direct quantitative detection of low-abundance proteins and nucleic acids remains a significant challenge. Herein, we report mass spectrum tags (MS-tags) based upon gold nanoparticle (AuNP)-templated phosphatidylcholine phospholipid (DSPC) liposomes, which exhibit high and reliable signals via electrospray ionization (ESI). Using these MS-tags, we constructed a liposome signal amplification-based mass spectrometric (LSAMS) "digital" counting assay to enable ultrasensitive detection of target nucleic acids. The LSAMS system consists of liposomes modified with a gold nanoparticle core and surface-anchored photocleavable DNA. In the presence of target nucleic acids, the modified liposome and a magnetic bead simultaneously hybridize with the target nucleic acid. After magnetic separation and photolysis, the MS-tag is released and can be analyzed by ESI-MS. At very low target concentrations, one liposome particle corresponds to one target molecule; thus, the concentration of the target can be estimated by counting the number of liposomes. With this assay, hepatitis C (HCV) virus RNA was successfully analyzed in clinical samples.


Assuntos
Lipossomos/análise , Nanopartículas Metálicas , Ácidos Nucleicos , Ouro/química , Espectrometria de Massas , Nanopartículas Metálicas/química
11.
ACS Appl Mater Interfaces ; 14(2): 2629-2637, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35000378

RESUMO

In this work, a T2-T1 switchable superparamagnetic iron oxide nanoprobe with a pH/H2O2 dual response was obtained using a microemulsion method. This novel method for the controllable assembly of small iron clusters followed by their independent modification was reported, which could not be prepared by common synthetic methods. The size of the assembled nanoprobe was uniform and controllable, with a stable T2 magnetic resonance imaging (MRI) signal under a single condition. When the nanoprobe was exposed to the tumor environment, the higher H+ and H2O2 concentrations at the tumor site could dissociate the nanoprobe and redisperse into small iron clusters. When this occurred, the T2 MRI signal was converted into a T1 MRI signal, achieving specific detection of tumors by a pH/H2O2 dual-response T2-T1 MRI.

12.
Anal Chem ; 93(42): 14223-14230, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34647451

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are a novel T1 contrast agent with good biocompatibility and switchable imaging signal that have not been widely applied for magnetic resonance imaging (MRI) because it is difficult to induce their relatively close ideal agglomeration. Here, by combining the microemulsion method with the biomineralization principle, a pH-responsive T2-T1 switchable MRI nanoprobe was constructed via the microemulsion-confined biomineralization of PEGylated USPIONs (PEG-USPIONs). The size of the formed CaCO3-coated PEG-USPION conjugates (PEG-USPIONs@CaCO3 nanoprobe) was uniform and controllable, and the preparation method was simple. The PEG-USPIONs inside the nanoconjugates agglomerate more tightly, and the T1-MRI signal of the nanoprobe is converted to the T2-MRI signal. When exposed to the acidic environment of the tumor tissue or internal organelles, the CaCO3-coating of the nanoprobes is dissolved, and free PEG-USPIONs are released, thus realizing the T1-weighted imaging of the tumors. The suitability of the PEG-USPIONs@CaCO3 nanoprobe for tumor MRI detection was successfully demonstrated using a mouse model bearing a subcutaneous 4T1 xenograft.


Assuntos
Nanopartículas , Neoplasias , Biomineralização , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética , Polietilenoglicóis
13.
J Mater Chem B ; 9(29): 5877-5886, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259273

RESUMO

Tumors are complex and highly variable, making it difficult for a single treatment strategy to be significantly effective for cancer therapy. Herein, we report a robust cascade biomimetic nanoplatform that integrates chemiluminescence-induced photodynamic therapy (CL-PDT), Fenton reaction-based chemodynamic therapy (CDT), and glucose oxidase (GOD)-mediated starvation therapy to synergistically enhance cancer treatment. For the nanoplatform of CPPO@porphyrin-MOF@Cancer cell membrane-GOD (C1@M@C2G), the ferric ion-linked porphyrin-MOF can trigger a Fenton reaction to reach CDT, the carried CPPO as an energy donor is used to excite a photo-sensitive porphyrin-MOF in situ to generate singlet oxygen (1O2) for PDT, GOD catalyzes glucose into H2O2 and gluconic acid to realize starvation therapy, and the cancer cell membrane wrapped onto the nanoparticle plays a key role in homologous targeting, which is conducive to achieving better therapeutic effects. Significantly, the porphyrin-MOF with catalase-like activity can generate O2 to effectively relieve tumor hypoxia, thereby enhancing the catalytic effect of GOD and the efficacy of PDT. Additionally, the produced H2O2 and gluconic acid can further improve the CPPO-H2O2-triggered CL-PDT and promote the low pH-dependence Fenton reaction-based CDT, respectively. Both in vitro and in vivo studies showed that the constructed nanoplatform displays an excellent cooperative anti-tumor performance, so we firmly believe that this simple nanoplatform broadens the pathway to fight against cancer through effective cascade catalysis.


Assuntos
Antineoplásicos/farmacologia , Materiais Biomiméticos/farmacologia , Glucose Oxidase/metabolismo , Estruturas Metalorgânicas/farmacologia , Nanoconjugados/química , Fotoquimioterapia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Biocatálise , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Hipóxia Tumoral/efeitos dos fármacos
14.
Anal Chem ; 93(30): 10601-10610, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34296856

RESUMO

Here, we have developed a novel photoactivatable red chemiluminescent AIEgen probe (ACL), based on the combination of the red-emission AIEgen fluorophore (TPEDC) that shows excellent singlet oxygen (1O2)-generation ability and the precursor of Schaap's dioxetane (the linker connected to adamantane is the C═C bond) that can be modified to target various analytes, for in vitro and in vivo measurement of hydrazine. Prior to applying for sensing detection, the C═C bond connected to adamantane in ACL was first converted into dioxetane by irradiation to form the activated chemiluminescent AIEgen probe (ACLD). Then, the self-immolative reaction was triggered upon the deprotection of the acylated phenolic hydroxyl group in ACLD in the presence of hydrazine, resulting in the release of the high energy held in the 1,2-dioxetanes, and then, the chemiexcitation was triggered, thereby producing red chemiluminescence through the intramolecular chemiluminescence resonance energy transfer from Schaap's dioxetane to TPEDC. This chemiluminescent AIEgen probe was evaluated in a clean buffer environment as well as using living cells and mouse models.


Assuntos
Luminescência , Oxigênio Singlete , Animais , Transferência de Energia , Corantes Fluorescentes , Hidrazinas , Camundongos
16.
ChemMedChem ; 16(14): 2278-2286, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792182

RESUMO

Chemodynamic therapy (CDT) is an effective tumor treatment strategy in which FeII reacts with hydrogen peroxide (H2 O2 ) in tumor cells to produce highly toxic hydroxyl radical (. OH) through the Fenton reaction. However, the content of endogenous H2 O2 in cells is limited, and the reaction between FeIII and H2 O2 is inefficient, greatly limiting the efficiency of the Fenton reaction and reducing the effectiveness of tumor treatment. Therefore, in this work, we designed and synthesized a new type of nano-system (CaO2 @TA-FeIII ) for the enhanced CDT of tumors, in which the polyphenolic compound- tannic acid (TA) and FeIII formed a TA-Fe nano-coating on the surface of calcium peroxide (CaO2 ) nanospherical aggregates. When the CaO2 @TA-FeIII nanoconjugates reach the tumor site, the CaO2 contained in the nanoconjugates produces H2 O2 after disintegration in tumor cells, and the carried TA rapidly reduces FeIII to FeII , solving the two major shortcomings in CDT of (1) insufficient content of H2 O2 in cancer cells, and (2) low catalytic efficiency of the Fenton reaction. Additionally, the . OH produced in the Fenton reaction induces oxidative stress for the tumor cells, promoting the occurrence of the "calcium overload" process, and thereby accelerating the death of tumor cells. Experimental results in vitro and in vivo showed that CaO2 @TA-FeIII nanoconjugates can effectively kill cancer cells and display an excellent tumor therapeutic effect. We believe that the CaO2 @TA-FeIII nanoconjugates are a promising new nano-platform for highly effective tumor treatment.


Assuntos
Antineoplásicos/farmacologia , Compostos Férricos/farmacologia , Nanopartículas/química , Peróxidos/farmacologia , Taninos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Camundongos , Imagem Óptica , Tamanho da Partícula , Peróxidos/química , Relação Estrutura-Atividade , Propriedades de Superfície , Taninos/química
17.
ACS Appl Bio Mater ; 4(7): 5566-5574, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006732

RESUMO

As an efficient, noninvasive, and high spatiotemporal resolved approach, photodynamic therapy (PDT) has high therapeutic potential for cancer treatment, whereas its development still faces a number of challenges, such as the lack of efficient and stable photosensitizers (PSs) and the inadequate ability of PSs to accumulate at tumor sites and target responses. Herein, a pH-responsive calcium carbonate (CaCO3)-mineralized AIEgen nanoprobe was prepared by using bovine serum albumin as the skeleton and loaded with a mitochondria-specific aggregation-induced emission (AIE)-active PS of 1-methyl-4-(4-(1,2,2-triphenylvinyl)styryl)quinolinium iodide (TPE-Qu+), which exhibits superior singlet oxygen (1O2)-generation ability and meanwhile possesses a bright near-infrared fluorescence emission. The biomineralized nanoparticles have small sizes (100 ± 10 nm) with good water dispersion and stability. With an increase in acidity (pH = 7.4-5.0), the internal TPE-Qu+ molecules are released gradually and accumulated in the mitochondria due to their hydrophobicity and electropositivity and then generate fluorescence emission and PDT under an external light source. Tumor inhibition and low acute toxicity were further successfully confirmed by the intracellular uptake test and 4T1-tumor-bearing mouse model.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Biomineralização , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/diagnóstico por imagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
18.
ACS Appl Bio Mater ; 4(4): 3490-3498, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014433

RESUMO

Current photodynamic therapy (PDT) faces several intrinsic limitations, including insufficient oxygen supply and limited penetration of external light sources. Herein, we report a nanoconjugate, which, in response to the elevated hydrogen peroxide levels associated with tumor tissues, can supplement the oxygen needed for PDT and provide local self-illumination. Consisting of a MnFe2O4 core, a metal-organic framework shell loaded with the chemiluminescence reagent luminol, and a hyaluronic acid surface coating, the nanoconjugate is highly effective for suppressing cancer tissues in vivo via PDT in the absence of externally delivered light.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Estruturas Metalorgânicas/farmacologia , Nanoconjugados/química , Oxigênio/farmacologia , Fotoquimioterapia , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células Hep G2 , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Peróxido de Hidrogênio/análise , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Luminol/química , Luminol/farmacologia , Teste de Materiais , Estruturas Metalorgânicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxigênio/química , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
19.
Anal Sci ; 37(12): 1675-1680, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33162413

RESUMO

A simple visual strategy was developed for the RNase H colorimetric measurement using DNAzyme-mediated signal amplification. When RNase H was presented, the RNA strand of the duplex formed by the G-rich DNA sequence (G-Rich) and its complementary RNA sequence (cp-RNA) was digested, releasing G-Rich to form HRP-mimicking DNAzymes of the G-quadruplex/hemin complexes in the presence of hemin. These DNAzymes catalyze the oxidation reaction of the substrate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to produce green-color products of ABTS•-, allowing for the detection of RNase H. A horseradish peroxidase (HRP)-mimicking DNAzyme of the G-quadruplex/hemin complex was used to mediate the signal amplification in the sensing strategy, resulting in high selectivity and sensitivity. This proposed colorimetric method shows a low detection limit of 0.04 U/mL, with a detection range of 0.1 to 3 U/mL. Moreover, this colorimetric method has been successfully used for RNase H assays in complicated biosamples, such as cell lysates. These results indicate that our colorimetric method not only detects RNase H in an ideal system, but also in real samples.


Assuntos
DNA Catalítico , Quadruplex G , Colorimetria , DNA Catalítico/metabolismo , Hemina , Ribonuclease H
20.
ACS Sens ; 5(12): 4009-4016, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33284591

RESUMO

The abnormal expression of some miRNAs is often closely related to the development of tumors. Available detection methods or biosensors that can simultaneously quantify multiple miRNAs in a single sample have rarely been reported. Herein, a novel catalytic hairpin self-assembly (CHA)-based surface-enhanced Raman scattering (SERS) sensor array was developed to simultaneously measure multiple miRNAs associated with cancer in one sample. The sensor array with four different sensing units was constructed by immobilizing one of four different hairpin-structured DNA sequence 1 (hp1) onto one of four Au/Ag alloy nanoparticle (AuAgNP)-coated detection wells. When target miRNA is present, the SERS tags, which were prepared by modifying AuAgNPs with a Raman reporter molecule of 4-mercaptobenzonitrile (MPBN) and the related hairpin-structured DNA sequence 2 (hp2), were captured onto the corresponding sensor unit through a repeated specific CHA reaction. This generated many "hot spots" because of interactions between the SERS tags and the AuAgNP layer-coated surface of the sensor, which ultimately produced a strong SERS signal that allowed the detection of target miRNAs with the detection limit of 0.15 pM. Using this SERS sensor array, multiple cancer-associated miRNAs (miR-1246, miR-221, miR-133a, and miR-21) were successfully determined in buffer, serum, and cellular RNA extracts.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias , Catálise , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...